Flow in a wavy-walled channel lined with a poroelastic layer

نویسندگان

  • By H. H. WEI
  • S. L. WATERS
  • S. Q. L IU
  • J. B. GROTBERG
چکیده

Motivated by physiological flows in capillaries, venules and the pleural space, the pressure-driven flow of a Newtonian fluid in a two-dimensional wavy-walled channel is investigated theoretically. The sinusoidal wavy shape is due to the configuration of underlying cells, their nuclei and intercellular junctions or clefts. The walls are lined with a thin poroelastic layer that models the glycocalyx coating of the cell surface. The upper and lower wavy walls are offset axially by the phase angle Φ , where Φ =0 (π) yields an antisymmetric (symmetric) channel. Biphasic theory is employed for the poroelastic layer and the flow is solved by a lubrication approximation using a small parameter, δ 1, where δ is the channel width/wavelength ratio. The velocity fields in the core and layer are determined as perturbation expansions in δ and finite-Reynolds-number effects occur at O(δ) assuming δRe 1. When the hydraulic resistivity, α, the ratio of the channel width to the Darcy permeability, is sufficiently large and Φ is near enough to π, the flow develops a trapped recirculation eddy within the glycocalyx layer near the widest part of the channel. This can be of significance to transport through the cellular boundary, since that location corresponds to intercellular clefts through which important fluid and solute exchange occurs. Increasing |Φ −π| diminishes the recirculation region. Increasing the Reynolds number moves the recirculation slightly upstream. Both layer velocity and wall shear stresses decrease as α increases and support the appearance of flow recirculation. Further, the wavy geometry allows a portion of the flow to enter and exit the layer, which provides a mechanism for convective transport between these two regions that otherwise have only diffusive interactions. The relevant Péclet number is Pe=V ∗ n b/D where D is molecular diffusivity and V ∗ n is the normal velocity to the glycocalyx layer. For large molecules, Pe=O(10) or higher, so the convective transport is important. The solid displacement, dictated by the layer flow field, increases as α increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Boltzmann method for MHD natural convection of CuO/water nanofluid in a wavy-walled cavity with sinusoidal temperature distribution

In this paper, natural convection heat transfer of CuO-water Nanofluid within a wavy-walled cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann model. The left wavy wall is heated sinusoidal, while the right flat wall is maintained at the constant temperature of Tc. The top and the bottom horizontal walls are smooth and insulated against heat and mass....

متن کامل

Numerical Analysis of Fully Developed Flow and Heat Transfer in Channels with Periodically Grooved Parts (TECHNICAL NOTE)

To obtain a higher heat transfer in the low Reynolds number flows, wavy channels are often employed in myriad engineering applications. In this study, the geometry of grooves shapes is parameterized by means of four angles. By changing these parameters new geometries are generated and numerical simulations are carried out for internal fully developed flow and heat transfer. Results are compared...

متن کامل

Study of the Effects of Various Boundary Conditions on the Acoustical Treatments of Double-Panel Structures Lined with Poroelatic Materials

In this paper, the acoustical treatment of double-panel structures lined with poroelatic materials is predicted using analytical method in order to study the effective usage of the various boundary conditions of porous layer and to identify the effective parameters on the transmission loss of the multilayer systems. Therefore, inertia and viscous coupling along with thermal and elastic coupling...

متن کامل

تحلیل انتقال حرارت مزدوج در ناحیه طول ورودی

In this paper conjugated heat transfer in thermal entrance region through the sinusoidal wavy channel has been investigated. The fluid flow is assumed to be laminar, steady state, incompressible, and hydrodynamically fully developed. A constant heat flux is assumed to be applied on the outer edge of the channel wall. In this study the governing equations including continuity, momentum and energ...

متن کامل

Numerical Study of Fluid Mixing in a Grooved Micro-Channel with Wavy Sidewalls

In this work, we perform numerical simulation of fluid mixing in a floor-grooved micro-channel with wavy sidewalls which may impose perturbation on the helical flow induced by the slanted grooves on the channel floor. The perturbation is caused by separation vortices in the recesses of the wavy-walled channel as the Reynolds number is large enough. The results show that the effects of the wavy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003